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COMMENT 

Permutation operators in Hilbert space gained via the IWOP 

technique-fermion case 
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Department of Modern Physics, China University of Science and Technology, Hefei, Anhui, 
People’s Republic of China 

Received 15 March 1989 

Abstract. For the case of fermions, permutation operators in Hilbert space are derived in 
terms of the fermion coherent state and the technique of integration within ordered products 
with the integration variables being Grassmann numbers. These operators are shown to 
be quantum maps imaged by a certain permutation transformation of the numbers. Some 
new Fermi operator identities are also obtained with the use of the same technique. 

1. Introduction 

In a previous work [ 11, by exploiting the newly developed technique of integration 
within ordered products ( IWOP) [2] we derived the unitary operators for permutations 
of N bosons in Hilbert space. An interesting question arises naturally: if the particles 
under study are fermions, what are the permutation operators in Hilbert space for N 
fermions? The purpose of this comment is to solve this problem by introducing the 
fermion coherent state and using the IWOP technique where the integration will be 
performed over the so-called anticommuting c numbers (or linear elements of a 
Grassmann algebra). In § 2, we list some properties of normal products of Fermi 
operators associated with Grassmann numbers and introduce IWOP technique into the 
fermion coherent state theory. In 0 3, we derive the transposition operator because 
any permutation is equivalent to a finite number of transpositions. A new Fermi 
operator identity is also deduced in this section. The approach we use in § 3 can be 
directly generalised to derive N-fermion permutation operators, as shown in § 4. 

2. Properties of normal products of Fermi operators 

The following properties of normal products of Fermi operators are useful in this work. 
( i )  Any two Fermi operators anticommute with each other within a normal product, 

which has been known for a long time. 
(ii) A Grassmann number-Fermi operator pair (GFP), say a l a l ,  commutes with 

another GFP within a normal product, e.g. 

: a , a l a 2 a 2 :  = : c ~ ~ a ~ a , a , : .  (2.1) 
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(iii) A normal product of Fermi operators can be integrated with respect to 
Grassmann variables according to the following formula [3]: 

where A, as pointed out in [4], is a complex-valued matrix. 

a, and a: ( i  = 1,2, . . . , N) satisfying 
Consider now a 2N-dimensional fermionic phase space spanned by the operators 

(2.3) t t  
{ ' I ,  'I> = 'I] a;=  { ' I ,  a J } = { a I ,  

The fermion coherent state is defined as [ 5 ]  

a,la,) = Ia,la, (a,lal= 4(all. 

Consistency requires a, to be Grassmann numbers which anticommute with a, and a:. 
a, and E ,  obey 

da ,  = dEi=O. I I  
la,) may then be represented by 

la,) = exp[-tG,a, + a:a,]lo), 

where IO), obeys a,lO), =0, and 
IO),,(OI = :e-":"# : . 

The orthogonality and completeness relations for (a,) are given by 

(a :lal) = exp[ -f( Gra,  + ci:a:) + G:(Y,] I dG, da,la,)(all  = d 4  da ,  e ~ p ~ - ~ l ~ i ~ ~ l ~ ~ , + l l ~ i ~ ~ ~ ~ l ~ ~ l + ~ l ~ l ~ ~  = 1. I (2.8) 

Using (2.5), (2.6) and (2.2), as well as the IWOP technique we can put (2.8) into the 
following normally ordered form: 

= dGt d a ,  : exp[-G,a, + a:a, + G,a, - a:a,] : = : exp[a:a, -a la , ]  : = 1. 

(2.9) 
Some applications of fermion coherent states are shown in [6]. 

3. Transposition operator and a new Fermi operator identity 

Let the two-mode fermion coherent state be 

lala,)= exp[-;(G,a, + ~ ~ a , ) + a ~ c y , + a ~ a , ] / ~ ~ )  100) = lO>,lO>, (3.1) 
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and la2al) be 

Ia2aI) = exp[-$(E,a, + &,a2)+ a:a2+ a:a,]100). (3.2) 

Using (3.1), (3.2) and the IWOP technique we perform the following integration: 

dE2 da21a2aI)(aIa2J 

=I d&, d a ,  5 d & 2 d a 2 : e x p [ - & , a , - & , a , + a , a 2 + a 2 a ,  t 
t 

+ E,al + &,a,- ais, - a:a2]: 

= : exp[a:a, + a ~ a 2 - a ~ a ,  - a:a2 ] : .  (3.3) 

In order to remove the symbol : : in (3.3), we prove the following new Fermi operator 
identity: 

(3.4) 

Actually, with the aid of the following two operator identities: 

1 1 
[ A ,  [ A ,  B ] ]  + eAB e-A = B + [ A ,  B ]  + [ A ,  [ A ,  [ A ,  B ] ] ]  + . . . (3 .5)  

[AB, C ] = A { C ,  B } - { C , A } B  (3.6) 

we can have 

where (2.3) is used. Further, in terms of (2.8) and the IWOP technique we can expand 
exp(H, u ~ A ~ u ~ )  as 

x e x p l - z a J ~ , a ~ J 1 0 0 . .  ij . 0 ) ( a , a 2 . .  

a,  a, + I  
= I fi d&, da, : exp 

U: N x N unit matrix. 

Thus (3.4) is verified. As a result of (3.4), (3.3) can be reduced to 

( a i -  a : ) (a ,  - a 2 )  . 1 (3.9) 
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As a consequence of (2.3), it is easily seen that 

It then follows that 

i t  =1-(a l -a , ) (a l -u , )=P:2= P;: 

P l 2 U l  P;: = (12 Pl2Q2P;: = a,  

(3.10) 

(3.11) 

(3.12) 

which confirms that (3.3) is indeed the transposition operator. Equation (3.3) also 
shows that P12 is the quantum map imaged by mutually interchanging a 1 - a 2  in 
Grassmann number space. In this way, we obtain the explicit form of P12 shown in 
(3.9) and (3.11), which is manifestly unitary. 

4. N-fermion permutation operators 

By analogy with the N-boson case shown in [I] ,  we introduce the N-body permutation 
matrix 

(uv . . .  w)= (4.1) 

where U, U,. . . , w is an arbitrary permutation of the numbers 1 ,2 , .  . . , N. There exist 
N !  permutation matrices which constitute, in the sense of matrix products, a group. 
By rewriting the N-mode fermion coherent state as 

we can construct the permutation operator Puo,,,w by 

J I  I 
N 

= n dCi  d a ,  

(4.2) 

(4.3) 
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Again, using the IWOP technique, we obtain the normally ordered form of Puv,,,w: 

which, by virtue of (3.4), becomes 

To prove the unitarity of Puu..,,,, by using (2.7) and (4.3), we consider 

(4.6) 

Due to (2.5) and (2.4) we have 

With the help of (4.7) and Idet(uu. . . w)l  = 1, (4.6) becomes 

Pu"...wp:v,..w = 1 

which indicates that Puv...w is unitary. For n = 3, from (4.5) we have 

(4.8) 

which is manifestly unitary. Though we have af  = 0 for fermion, it is not so easy to 
make a neat expansion of the exponential operator in (4.9) as we did for (3.9). 
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Nevertheless, using (2.7) and (4.7) we can obtain 

(4.10) 

which means the breakdown of P312 into the product of P213 and PI,,. Since both P312 
and Pz13P132 now have their own explicit Fermi operator forms in Hilbert space, as a 
by-product, one can obtain some new operator identities regarding the relationship 
between the permutation operator and its corresponding transposition operators. 

In summary, we have seen that the IWOP technique with the integral variables being 
Grassmann numbers enlarges the field of application of fermion coherent states; the 
unitary permutation operators for N-fermion permutation are obtained in a closely 
parallel manner to the boson case in [ l ]  (where, instead of using the boson coherent 
state, we used the coordinate eigenstate to realise the IWOP technique). The formulation 
in [ l ]  and in this comment provides us with a fresh view-all unitary permutation 
operators in quantum statistics, either for bosons or for fermions, are quantum maps 
imaged by certain permutation transformations in classical space. Moreover, the 
classical-to-quantum transition is manifestly apparent in the formulation. We will give 
some new applications of the IWOP technique for Grassmann numbers in the future. 

Note added in proof: Because any two Fermi operators are anticommuting with each other within : :, it is 
convenient to obtain the explicit operator form of P312 by directly expanding (4.4); the result is 

P ~ ~ ~ =  l + a ~ a 3 a 2 a : + a : a , a 3 a : + a l a 2 a , a ~  

- a : a , a , a ; - a : a , a , a : - a ; a , a , a ~ - a ~ t a 1 a ~ a , - a S a , a 3 a , - a l a 3 a ~ a 2 ,  

One can directly check that 

P312a, P l l 2  = a ,  P 3 2 1 a 2 ~ ; , 2  = a3 ' 3  12'3 1 2  = a 1  . 
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